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1. INTRODUCTION

A frequently encountered scenario in structural dynamics is determining the
changes in the eigensolution of a system after certain modi"cations are introduced.
Clearly, if these modi"cations are substantial, then a new analysis and
computational cycle are necessary in order to compute the new eigendata.
However, if the changes made are small, then the perturbation theory can be
applied whereby the initial modal characteristics are used as a basis to extract the
new eigensolution of the modi"ed system without performing a new and possibly
costly analysis. Over the years the perturbation theory has been used in the solution
of many di!erent problems, and hence only a few selected references are given
[1}7].

In this technical note, the perturbation theory will be used to determine the "rst
order eigensolutions of a slightly perturbed symmetric generalized eigenvalue
problem and its corresponding standard eigenvalue problem. The "rst order
perturbation results obtained in this technical note are well known and certainly
not new. The objective of this technical note is not to show how the perturbation
theory can be applied to extract the modes of vibration of slightly modi"ed
structures. Instead, the goal is to highlight the similarities and di!erences in the "rst
order perturbed eigensolutions for the same system obtained by solving
a generalized eigenvalue problem and its corresponding standard eigenvalue
problem. In particular, it will be shown that a certain coe$cient that is commonly
assumed zero (in the standard eigenvalue problem formulation) cannot be
neglected. Numerical examples and comparisons will be made to illustrate the
importance of this term.
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1.1. SYMMETRIC GENERALIZED EIGENVALUE PROBLEM

Consider a system whose initial free response is governed by
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where [K
o
] and [M
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] are the real, symmetric unperturbed sti!ness and mass

matrices of size N]N, whose jth eigenvalue and eigenvector are denoted by j
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and
x
oj
, respectively. Assume the N eigenvalues are all distinct and the eigenvectors are

properly normalized such that the following orthogonality conditions are met:
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where dj
i
is the Kronecker delta.

The system is now slightly modi"ed or perturbed such that its new modes of
vibration are obtained by solving
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, (3)

where matrices [K] and [M] remain symmetric. The perturbed sti!ness and mass
matrices are given by

[K]"[K
o
]#[dK]#2, [M]"[M

o
]#[dM]#2, (4)

where [dK] and [dM] correspond to the symmetric "rst order perturbation
matrices. Assuming the modi"cations made are small, then the eigensolution of
equation (1) can be used to derive approximate expressions for the eigensolution of
equation (3). To this end, the eigenvalues and eigenvectors of equation (3) are
assumed to di!er from those of equation (1) by some small perturbations as follows:
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where (j
oj

, x
oj

) are the jth unperturbed eigensolution, and (dj
j
, dx

j
) are the jth "rst

order perturbations. The unperturbed eigenvectors are normalized according to
equation (2). Thus, the unperturbed eigenvectors, the x

oj
's, form a complete

orthonormal set (with respect to [M
o
]) in the N-dimensional space, and any vector

in that N-dimensional space may be expressed as a linear combination of the x
oj
's.

Hence, the jth "rst order eigenvector perturbation can be written as

dx
j
"

N
+
r/1

e
rj
x
or

, (6)

where the e
rj
's are the small coe$cients to be determined.

Substituting equations (5) and (4) into equation (3) and keeping only the "rst
order terms, we obtain

[K
o
]dx

j
#[dK]x

oj
"j

oj
[M

o
]dx

j
#j

oj
[dM]x

oj
#dj

j
[M

o
]x

oj
. (7)

Substituting equation (6) into equation (7) yields
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Premultiplying equation (8) by xT
oj

and recalling the orthogonality conditions of
equation (2), we have
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Premultiplying equation (8) by xT
oj

(iOj ) and recalling the orthogonality conditions
of equation (2), we get
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To determine the coe$cient e
jj
, we assume the perturbed eigenvectors, the x

j
's,

satisfy the orthogonality condition
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After some algebra, we obtain
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Thus, to the "rst order, the jth perturbed eigenvalue and eigenvector are given by
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1.2. NON-SYMMETRIC STANDARD EIGENVALUE PROBLEM

It is often desirable to solve a standard eigenvalue problem as opposed to
a generalized eigenvalue problem. The rationale is two-fold. First, many
numerically e$cient algorithms have been developed over the years speci"cally for
the solution of a standard eigenvalue problem [8}10]. Second, the behavior of
a standard eigenvalue problem is much better understood, and many theorems
have been formulated for a standard as opposed to a generalized eigenvalue
problem [11]. Motivated by the above arguments, the perturbation theory is also
applied to the standard eigenvalue problem that corresponds to equation (3).

If [M
o
] is positive de"nite, it is always possible to convert equation (1) into the

standard eigenvalue problem.

[A
o
]x

oj
"j

oj
x
oj

, (15)

where the j
oj
's are assumed to be distinct and
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o
]"[M

o
]~1[K

o
]. (16)

It is important to note that even [M
o
]"[M
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]T and [K
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generally not symmetric. The symmetric generalized eigenvalue problem of
equation (1) can also be written as
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Noting equation (16) and introducing the co-ordinate transformation
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equation (17) reduces to
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which is known as the adjoint eigenvalue problem associated with equation (15).
Since [M

o
] is invertible and since the set of eigenvectors (x

oj
)
j/1,2 ,N

forms a basis
in the N-dimensional space, then the set of (y

oj
)
j/1,2 ,N

also forms a basis in the
same N-dimensional space. The eigenvectors x

oj
and y

oj
are also known as the right

and left eigenvectors of [A
o
], respectively. For convenience, x

oj
and y

oj
are

normalized so that they satisfy
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Substituting equation (18) into equation (20), we recover the orthogonality
conditions of equation (2).

When the system is slightly perturbed, equation (3) can always be manipulated
(provided [M] is also positive de"nite) into the standard eigenvalue problem.
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j
, (21)

where [A] is generally non-symmetric of the form

[A]"[M]~1[K]. (22)

Matrix [A] can be expressed as

[A]"[A
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]#[dA]#2, (23)

where [A
o
] is given by equation (16) and [dA] represents the "rst order

perturbation matrix. Equation (22) can also be written as
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Expanding equation (25) and retaining only the "rst order terms, we "nd the
following expression for [dA]:
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Substituting equations (5) and (23) into equation (21) and keeping only the "rst
order terms, we obtain
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Substituting equation (6) into equation (27), premultiplying the resultant expression
by yT
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and recalling the orthogonality conditions of equation (20), we get
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Utilizing the same procedure outlined above except premultiplying by yT
oi

(iOj), we
"nd
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In the expansion of equation (6) for the non-symmetric standard eigenvalue
problem of equation (21), Meirovitch [12] assumed that e

jj
"0 from the onset. He

claimed that this is done to guarantee dx
i
"0 when [dA]"[0], and to ensure the

coe$cient of x
oi

remains equal to 1 when [A
o
] is replaced by [A]. However, since

e
ij

for iOj is retained in the "rst order approximation, it is unclear why e
jj

has to
vanish.

Pierre [13] also carried out a similar perturbation analysis. He determined that
e
jj
"0 by keeping the inner product of the left and right eigenvectors a constant as

follows:
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Expanding equation (30) and keeping only the "rst order terms leads to

yT
oj

dx
j
#xT

oj
dy

j
"0. (31)

Assuming that the eigenvectors can be perturbed symmetrically, i.e., assuming that
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he reduced equation (31) to

2yT
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Using equation (6) and the orthogonality condition of equation (20), he readily
obtained e

jj
"0. The above derivation, however, clearly hinges on the &&symmetric

perturbation'' assumption, which appears arbitrary.
Return now to equation (31). The jth left eigenvector perturbation can be

expressed as a linear combination of the unperturbed left eigenvectors as
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where the a
rj
's are small constant coe$cients. Substituting both equation (6) and

(34) into equation (31) yields
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While e
jj

and a
jj

sum to zero, they certainly do not have to vanish simultaneously.
Only when [A

o
] is symmetric does the above lead to e

jj
"0 (since a

jj
"e

jj
). For

this particular case, the unperturbed system becomes self-adjoint, and without loss
of generality, we can assume that the right and left unperturbed eigensectors
coincide. Hence e

jj
"0 is strictly valid for the above special case, and in general,

e
jj
O0.
Finally, using a "rst order perturbation analysis and assuming that e

jj
"0, the

jth perturbed eigenvalue and eigenvector for the non-symmetric standard
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eigenvalue problem of equation (21) can be expressed as
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In contrast to equation (14), note that x
oj

in equation (37) is not perturbed at all.
Finally, the jth left eigenvector, y

j
, can be obtained in a similar fashion so that
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2. RESULTS

The perturbation expressions of equations (13)}(14) and equations (36)} (37) are
obtained from the same symmetric generalized eigenvalue problem of equation (3).
While they may appear di!erent, they must somehow be related. Our goal now is to
compare these results analytically and numerically.

2.1. ANALYTICAL COMPARISON

We "rst consider the perturbed eigenvalue expressions of equations (13) and (36).
Substituting equation (18) and (26) into equation (36), we get
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which clearly shows that equation (13) and (36) are in fact identical.
We now proceed to compare the perturbed eigenvector expressions of equations

(14) and (37). Substituting equations (18) and (26) into equation (37), we get
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which can also be expressed as
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Comparing equation (14) and (44), we immediately notice the absence of the term
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in the perturbed eigenvector expression for the standard eigenvalue problem, which
clearly corresponds to the "rst order perturbation term of e

jj
x
oj

. Thus, while both
perturbation approaches lead to the same perturbed eigenvalues, they di!er in the
perturbed eigenvectors by a "rst order term given by equation (45).

We will now prove, by contradiction, whether the assumption of e
jj
"0 can be

made. From equation (13), we noticed that
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For e
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"0, equation (12) dictates that
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dj
j
"xT

oj
[dK]x

oj
"xT

oj
([K]![K

o
])x

oj
"xT

oj
[K]x

oj
!xT

oj
[K

o
]x

oj
. (48)

Recalling equation (1), we can rewrite equation (48) alternatively as

dj
j
"xT

oj
[K]x

oj
!j

oj
xT
oj

[M
o
]x

oj
"xT

oj
[K]x

oj
!j

oj
, (49)

which yields

j
j
"j

oj
#dj

j
"xT

oj
[K]x

oj
. (50)

Equation (50) implies that by assuming e
jj
"0, j

j
depends only on [K] and not on

[M], contrary to the generalized eigenvalue problem formulation of equation (3),
which clearly depends on both [K] and [M]. Since the standard eigenvalue
problem of equation (21) is derived from the generalized eigenvalue problem of
equation (3), we have shown indirectly that the assumption of e

jj
"0 is generally

not valid.

2.2. NUMERICAL COMPARISON

Having analytically compared the perturbed eigensolution of a symmetric
generalized eigenvalue problem and its corresponding standard eigenvalue
problem, we now numerically compare the perturbation results with the exact
solution. The system under consideration is shown in Figure 1, where the mass
matrix is diagonal and the sti!ness matrix is tri-diagonal. The nominal system
parameters and their perturbations are given in Table 1.

Equations (13) and (36) are used to compute the perturbed eigenvalues. Since
the eigenvalues are scalar quantities, a simple percentage error relative to the
exact eigenvalue can be used to compare the accuracy of the perturbed eigenvalues.
Table 2 shows the exact and the "rst order perturbed eigenvalues. Also listed are
the corresponding percentage errors relative to the exact eigenvalues. Note that the
results of equations (13) and (36) are identical, and they are in excellent agreement
with the exact solution.

We now turn our attention to the perturbed eigenvectors. Comparing the "rst
order eigenvector expressions of equations (14)}(37), we immediately notice the
absence of the e

jj
x
oj

term in equation (37). Of great interest is the e!ect of this term



Figure 1. Simple chain of coupled oscillators.

TABLE 1

¹he nomial system parameters and their perturbations for the system of Figure 1. ¹he
last column represents the percentage deviation from the nominal value

Nominal Perturbations % Deviation

m
1
"5045 kg dm

1
"!443 kg !8)78

m
2
"5045 kg dm

2
"648 kg 12)84

m
3
"5045 kg dm

3
"148 kg 2)93

m
4
"5045 kg dm

4
"!738 kg !14)63

m
5
"3810 kg dm

5
"341 kg 8)95

k
1
"1)622]106 N/m dk

1
"!1)63]105 N/m !10)05

k
2
"1)622]106 N/m dk

2
"9)60]104 N/m 5)92

k
3
"1)622]106 N/m dk

3
"2)10]105 N/m 12)95

k
4
"1)622]106 N/m dk

4
"!7)30]104 N/m !4.50

k
5
"1)622]106 N/m dk

5
"!9)00]104 N/m !5.55

TABLE 2

¹he exact and the perturbation eigenvalues of the system of Figure 1, whose system
parameters are given in ¹able 1. GE<P and SE<P denote the generalized and

standard eigenvalue perturbations, respectively

Eigenvalue (1/s2) Exact GEVP, SEVP (% error)

j
1

28)3624 28)6461 (1)00)
j
2

221)4155 221)5366 (0)05)
j
3

595)5432 591)2111 (!0)73)
j
4

973)1540 961)8444 (!1)16)
j
5

1230)9333 1224)1008 (!0)56)
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on the jth perturbed eigenvector. Table 3 shows the exact modal matrix [X], the
perturbed modal matrix [X

g
], whose columns are given by equation (14), and the

perturbed modal matrix [X
s
], whose columns are given by equation (37). The

modal matrices are normalized such that the magnitude of the largest element



TABLE 3

¹he exact model matrix [X], the perturbed modal matrix [X
g
], obtained by solving

a generalized eigenvalue problem, and the perturbed modal matrix [X
s
], obtained by

solving a standard eigenvalue problem. ¹he system parameters are identical to those
given in ¹able 1

[X]"

0)33062E#00 !0)69549E#00 0)10000E#01 0)98046E#00 0)55702E#00
0)58627E#00 !0)87363E#00 0)25396E#00 !0)74273E#00 !0)80659E#00
0)77434E#00 !0)43958E#00 !0)91565E#00 !0)11259E#00 0)10000E#01
0)92315E#00 0)40007E#00 !0)47081E#00 0)10000E#01 !0)99003E#00
0)10000E#01 0)10000E#01 0)76724E#00 !0)61095E#00 0)42395E#00

[X
g
]"

0)32979E#00 !0)68338E#00 0)10000E#01 0)97079E#00 0)55800E#00
0)58689E#00 !0)86246E#00 0)26595E#00 !0)72228E#00 !0)80607E#00
0)77284E#00 !0)43886E#00 !0)89982E#00 !0)13495E#00 0)10000E#01
0)92300E#00 0)40045E#00 !0)47587E#00 0)10000E#01 !0)95185E#00
0)10000E#01 0)10000E#01 0)77271E#00 !0)59936E#00 0)40165E#00

[X
s
]"

0)29087E#00 !0)68467E#00 0)84709E#00 0)95715E#00 0)46296E#00
0)53215E#00 !0)86469E#00 0)68650E#00 !0)73812E#00 !0)10000E#01
0)73057E#00 !0)43967E#00 !0)10000E#01 !0)14647E#00 0)98016E#01
0)90620E#00 0)40077E#00 !0)38996E#00 0)10000E#01 !0)93663E#00
0)10000E#01 0)10000E#01 0)99029E#00 !0)57796E#00 0)57927E#00
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within each eigenvector is equal to 1. By inspection, note the excellent agreement
between [X

g
] and [X] in comparison to [X

s
] and [X]. It should be emphasized

that the only di!erence between the two perturbed modal matrices is that equation
(14) accounts for e

jj
while equation (37) assumes e

jj
"0.

Finally, it is customary to check the self-compatibility of the perturbed
eigenvectors by resorting to the orthogonality characteristics of the normal modes.
For the generalized eigenvalue problems, the following orthogonality check may be
used:

[OR
g
]"[X

g
]T[M][X

g
], (51)

where [OR
g
] is an orthogonal matrix, [M] is the system mass matrix, and [X

g
] is

the perturbed modal matrix normalized such that the diagonal elements of [OR
g
]

are unity. Similarly, for the standard eigenvalue problems, the following
orthogonality check may be utilized:

[OR
s
]"[X

s
]T[>

s
] (52)

where [OR
s
] is the orthogonal matrix, [X

s
] and [>

s
] are the right and left

perturbed modal matrices, respectively, whose columns are given by the perturbed
eigenvectors of equations (37) and (38). The modal matrices are normalized such
that he diagonal elements of [OR

s
] are identically 1.

Theoretically, if the perturbed modal matrices are exact, then the orthogonal
matrices correspond to the identity matrix. Since the perturbed modal matrices are



TABLE 4

¹he orthogonal matrix given by equation (51). ¹he system parameters are identical to
shose given in ¹able 1. ¹he average magnitude of the o+-diagonal terms is

d
g
"0)00345. ¹he largest magnitude of the o+-diagonal elements is 0)00850.

[OR
g
]"

0)10000E#01 0)49152E!02 0)85037E!02 0)44457E!03 0)35650E!02
0)49152E!02 0)10000E#01 !0)10643E!02 0)29686E!02 !0)37423E!02
0)85037E!02 !0)10643E!02 0)10000E#01 0)25199E!02 !0)62670E!02
0)44457E!03 0)29686E!02 0)25199E!02 0)10000E#01 0)55539E!03
0)35650E!02 !0)37423E!02 !0)62670E!02 0)55539E!03 0)10000E#01

TABLE 5

¹he orthogonal matrix given by equation (52). ¹he system parameters are identical to
those given in ¹able 1. ¹he average magnitude of the o+-diagonal terms is

d
s
"0)03549. ¹he largest magnitude of the o+-diagonal elements is 0)21255.

[OR
s
]"

0)10000E#01 0)37158E!01 0)19208E!02 !0)61104E!03 !0)30838E!03
!0)83064E!01 !0)10000E#01 !0)10943E#00 0)30838E!01 0)16660E!01

0)14163E!01 0)21255E#00 0)10000E#01 !0)44290E!02 !0)26225E!02
0)66516E!03 0)24683E!01 0)45968E!02 0)10000E#01 0)10168E!02
0)60744E!02 0)14371E#00 0)11179E!01 !0)41672E!02 0)10000E#01
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approximate, the magnitudes of the non-zero o!-diagonal terms of the orthogonal
matrices can be used to pass judgement on the accuracy of the perturbed
eigenvectors. Tables 4 and 5 show the orthogonal matrices for the system of Figure
1. Since some o!-diagonal magnitudes are larger while others are smaller when
comparing one orthogonal matrix to the other, it is di$cult to ascertain which
perturbation approach leads to a more accurate perturbed modal matrix by simple
inspection. In order to make such a comparison quantitatively, an average
o!-diagonal magnitude is de"ned as

d"
1

N(N!1)
N
+
r/1

N
+

j/1,jOi

DOR(i, j ) D , (53)

where DOR(i, j) D is the absolute value of the (i, j )th element of the orthogonal matrix,
either [OR

g
] or [OR

s
], depending on which eigenvalue problem is under

consideration. A smaller value of d implies a better perturbed modal matrix. For
the set of system modi"cations of Table 1, the average o!-diagonal magnitudes for
the generalized and the standard orghogonal matrices are d

g
"0)00345 and

d
s
"0)03549, respectively. The magnitudes of the largest o!-diagonal elements are

DOR
g
(i, j ) D

.!9
"0)00850 and DOR

s
(i, j) D

.!9
"0)21255. Note that while both

approaches lead to the same perturbed eigenvalues, the generalized eigenvector
perturbation expression of equation (14) yields a much better approximation to the
exact eigenvectors than the standard eigenvector perturbation expression of
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equation (37). Thus, the coe$cient e
jj

may have signi"cant e!ect on the quality of
the perturbed eigenvectors.

3. CONCLUSIONS

In this technical note, a comparison is made between the perturbed eigenvalues
and eigenvectors obtained by solving a generalized eigenvalue problem and its
equivalent standard eigenvalue problem. Analytically and numerically, both
approaches lead to the same perturbed eigenvalues. For a generalized eigenvalue
problem, the jth perturbed eigenvector expression includes a "rst order
perturbation of the jth unperturbed eigenvector, which is commonly assumed to be
zero in the standard eigenvalue problem perturbation formulation. While this
correction term to the jth unperturbed eigenvector is of "rst order, it may have
a substantial e!ect on the accuracy of the perturbed eigenvectors and should not be
neglected.
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